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Abstract

A novel meta-regression method, PET-PEESE, predicts and explains recent high-profile failures
to replicate in psychology. The central purpose of this paper is to identify the limitations of PET-
PEESE for application to social/personality psychology. Using typical conditions found in
social/personality research, our simulations identify three areas of concern. PET-PEESE
performs poorly in research areas where: there are only a few studies, all studies use small
samples, and where there is very high heterogeneity of results from study to study. Nonetheless,
the statistical properties of conventional meta-analysis approaches are much worse than PET-
PEESE under these same conditions. Our simulations suggest alterations to conventional
research practice and ways to moderate PET-PEESE weaknesses.
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Limitations of PET-PEESE and other meta-analysis methods

Recently, there have been high-profile failures to replicate psychological phenomenon (e.g.,
Open Science Collaboration, 2015; Hagger et al., 2016). Yet, reproducibility by independent
researchers has long been regarded as the “hallmark of science” (Popper, 1959). In at least one
case, novel meta-regression methods, precision-effect test and precision-effect estimate with
standard errors (PET-PEESE), anticipated the failure to replicate psychological phenomenon, the
ego depletion effect (Stanley and Doucouloagos, 2014; Carter et al.; 2015). These new meta-
analysis methods for accommodating ‘publication bias’ can do much to address the source of the
current credibility and replication ‘crises’ across the social sciences. However, they too have
shortcomings. The central purpose of this paper is to identify the limitations of PET-PEESE
when applied to typical areas of social/personality psychology. In the process, we also show that
conventional meta-analytic methods (fixed- and random-effects weighted averages) are of little
use in identifying an authentic effect when there is selective reporting of statistical significant

results (aka, ‘publication bias’).

Selective Reporting and Publication Bias

For decades, researchers have been acutely aware that the selective reporting of statistically
significant results (aka: the file-drawer problem, publication bias, small-sample bias and p-
hacking) poses a major threat to the scientific validity of psychology and other social sciences
(Sterling, 1959; Rosenthal, 1979; Glass, McGaw and Smith, 1981; Hedges and Oklin, 1985;
Begg and Berlin, 1988; Schmidt and Hunter, 2014, to cite a few). When even a portion of
reported findings have been selected to be statistically significant and ‘positive,” average effect
sizes can be greatly exaggerated or made to appear to be important when there is no genuine
effect (Stanley, 2008; Stanley et al, 2010; Stanley and Doucouliagos, 2014).

Some researchers, referees or editors may suppress insignificant findings, leaving them in
the proverbial ‘file-drawer’ (Rosenthal, 1979). Others might ‘p-hack’ their statistical analysis by
employing questionable statistical practices such as: data-peaking, choosing which of multiple
dependent measures to report, and selectively omitting ‘outliers’ (Simonsohn et al, 2014).

Regardless, the effect on the research record will be much the same; reported effects will be



larger than the underlying ‘true’ effect size. The simulations reported below are constructed in a
way that makes the exact mechanism of selective reporting bias immaterial, encompassing

research practices called: the ‘file drawer problem,’ ‘publication bias,” and ‘p-hacking.’

Meta-Analysis
Meta-regression models of selective reporting and publication bias

When only statistically significant, positive results are reported, selective reporting bias is equal
to the reported estimate’s standard error times the inverse Mill’s ratio (Stanley and
Doucouliagos, 2014, p. 61). Medical researchers sometimes use a linear approximation to the

inverse Mill’s ratio as the basis for a test of selective reporting bias—Ho: 4, =0 in:

d. =B, + B,SE +u, i=1,2,..., m (1)

(Egger et al, 1997; Stanley, 2008; Stanley and Doucouliagos, 2014). Where oTi is the estimated
effect size, SE; is its standard error, and m is the number of estimates in the research record.
Equation (1) is estimated by weighted least squares (WLS), using 1/ SE? as the weights.

The conventional t-test of £o (Ho: S0 =0) in the WLS estimate of equation (1) provides a
statistical test for a genuine empirical effect beyond the reach of selective reporting bias, called
the ‘precision-effect test” or PET (Stanley, 2008). As SE, approaches 0O, studies become
objectively better and better, and meta-regression (1) implies that estimated effect sizes approach
o, on average. Simulations of estimated regression coefficients demonstrate that PET is often a
powerful test for the presence of an authentic effect beyond selective reporting bias (Stanley,

2008). However, g, from (1) tends to underestimate the true effect when there is a nonzero

treatment effect. In these cases, Stanley and Doucouliagos (2014) find that replacing the effect

size’s standard error, SE, , in equation (1) by its variance, SE?, reduces the bias of the estimated

meta-regression intercept.

A

di: v+ yi SEi2+Ui i=1,2,...,m (2



with 1/SE? as the WLS weight. 7, from (2) is the precision-effect estimate with the standard
error (PEESE).

To reduce the bias in estimating the ‘true’ average effect from either meta-regression
model (1) or (2), Stanley and Doucouliagos (2014) recommend a conditional estimator. When
there is evidence of a genuine treatment effect, PEESE from equation (2) should be used;

otherwise, the corrected effect is best estimated by g, from equation (1). For the purpose of

deciding which meta-regression accommodation for selective reporting bias to employ, we

recommend testing Ho: v < 0 at the 10% significance level.

Conventional meta-analysis

The role of conventional meta-analysis estimators, ‘fixed’- and ‘random-effects’, is to integrate

and summarize all comparable estimates found in the research record. They assume that the
individual reported effect sizes, &i , are randomly and normally distributed around some common
overall mean effect, 1. Each estimates x using a weighted average,

A=ZaY; [T, 3)
but they employ different weights and thereby have different variances. Fixed effect (FE) uses

weights, w,=1/SE?, and has variance, 1/w,. Random effects (RE) has weights, w/ =1/

(SEZ + #%) with variance, 1/=w! ; where 7% is the estimated heterogeneity variance.

An alternative weighted average—WLS

The unrestricted weighted least squares weighted average, WLS, makes use of the multiplicative
invariance property implicit in all weighted least squares approaches (Stanley and Doucouliagos,
2015). It is calculated by running a simple meta-regression, with no intercept, of t-statistics vs.

precision:
t, =d,/SE, =a(l/SE,)+uy, i=1,2,...,m (4)

(Stanley and Doucouliagos, 2015). Ordinary least squares using any standard statistical software

will calculate this WLS weighted average, &, its standard error and confidence interval.



Comprehensive simulations demonstrate that the unrestricted weighted least squares
estimator’s statistical properties are as good as and often better than random-effects when the
random-effects model is true (Stanley and Doucouliagos, 2015). When there is no selective
reporting (or publication) bias, WLS’s properties are practically equivalent to RE. However, if
there is selective reporting, WLS has consistently smaller bias than RE. The simulations reported
in this paper do not report fixed-effect (FE) to conserve space and because WLS gives the exact

same point estimate but always has superior standard errors when there is heterogeneity.

Simulations

We simulate randomized controlled experiments over a wide variety of conditions typically
found in social/personality psychological research. Past simulations of PET and PET-PEESE
concerned estimated regression coefficients from observational studies (Stanley, 2008; Stanley
and Doucouliagos, 2014). Thus, the properties of these meta-regression methods may differ
when applied to standardized mean differences from social/personality experiments. In
particular, the well-known dependence of the standard error of Cohen’s d upon the value of
Cohen’s d may cause special difficulties for the FAT-PET meta-regression model (1).

Design

The average reported Cohen’s d in social psychology is approximately .4 (Richard and
Bond, 2003). We round this up to .5 in our simulations to allow for potential ‘medium’-size
effect, as defined by Cohen’s guidelines. Because there is evidence of selective reporting in at
least some areas of social/personality psychology, ‘true’ effects are likely to be smaller. While
replicating 100 psychological experiments, the Open Science Collaboration (2015) found that
average effects were one-half the magnitude as those reported in the original studies. Such a
100% °‘research inflation” has also been found in a survey of over 6,700 studies in economics
(loannidis et al., 2016). Combining this 100% selective reporting bias with Richard and Bond’s
(2003) survey suggests that a ‘true’ effect of d=2 may be more representative of
social/personality psychology. We also investigate d=0 to bracket typical effect sizes.

Our simulation experiments allow different numbers of studies in different areas of

research, m = {10, 20, 40, 80}. For those few areas of research which have more than 80



comparable estimates, the relative statistical properties reported below will differ little from what
we find for m=80.
To be more specific, these simulations first involved the generation of individual subject

outcomes as:

Y = X5 tUg =1, 2,...,n )

for individuals in the control group; where u; ~ N(0, 502) and x¢; ~ N(300, 86.6%). Outcomes in

the experimental group are generated in the exact same, yet independent, manner, with the single

exception that they add the treatment effect, T, = #+ 6, and 6, ~ N(0, &?), to equation (5).

Our simulations fix the mean of ‘true’ effects, 4, as either: 0, 20, or 50. The values of the
other parameters make the mean true value of Cohen’s d equal to either: 0.0, 0.2 or 0.5. Fraley
and Vazire (2014) find that the median combined sample size is 100 in social/personality
psychology’s top journals. We also follow Fraley and Vazire’s (2014) posted distribution of
sample sizes across these top journals, giving n={15, 35, 50, 100, or 200} as distribution of
sample sizes per group across studies. To be comprehensive, we also generate other distributions
of sample sizes representing worse-case scenarios (very small samples with a compact
distribution of sample sizes) and better-case scenarios (larger samples with more dispersed
sample sizes).

Past simulation studies found that the magnitude of excess heterogeneity is the most
important research dimension that drives selective reporting bias and the statistical properties of
alternative meta-analysis methods (Stanley, 2008; Stanley et al., 2010; Stanley and
Doucouliagos, 2014; Stanley and Doucouliagos, 2015; Stanley and Doucouliagos, 2016).
Following these other studies, we investigate a wide range of heterogeneity by varying the
standard deviation of random between-study heterogeneity, ,, from 0 to 50, o, ={0, 6.25, 12.5,
25, 50}. It is important to recognize that such heterogeneity means that there is no single ‘true’
effect size. Instead, there is a distribution of ‘true’ effects that are normally distributed around
their mean, pg = {0.0, 0.2, 0.5}. This heterogeneity causes the relative measure of observed
heterogeneity, 12, to vary from near 0 to over 95% (Higgins and Thompson, 2002). I2is easy to
calculate. 1> = {(MSE-1)/MSE} from the simple WLS meta-regression, equation (4). See Tables

1-4 and note that these I2 values are computed empirically for each simulated meta-analysis.



Table 1: Bias, power and level of alternative meta-methods with 50% reporting selection

Design Average Bias Power/Type | Error

d m Oh Bias 12 RE WLS PET-PEESE RE WLS PET
0 10 0 .2489 5113 .1957 1674 .0014 7977 4828 0.0000
0 10 6.25 .2506 5317 .2004 .1707 .0082 7784 4955 .0001
0 10 12,5 .2609 .5847 .2156 .1828 .0239 7481 4836 .0029
0 10 25 .2917 .7082 .2580 2171 .0622 6921 A717 .0245
0 10 50 .3701 .8602 .3503 .2989 .1367 .6037 4192 0574
0 20 0 .2482 5140 .1958 .1668 .0008 .9942 .9503 .0002
0 20 6.25 .2517 5409 .2015 1714 .0086 .9931 .9290 .0005
0 20 12,5 .2603 .6020 .2158 .1824 .0254 .9825 .8833 .0052
0 20 25 .2902 7367 .2581 2177 0714 .9469 7913 .0342
0 20 50 .3683 .8818 .3502 .2977 .1455 .8654 6761 .0914
0 40 0 2484 5154 .1958 .1667 .0006 1.0000 1.0000 .0002
0 40 6.25 .2515 5427 .2016 1712 .0089 1.0000 .9999 .0009
0 40 12.5 .2614 .6102 .2170 .1832 .0275 1.0000 .9988 .0068
0 40 25 .2899 7486 .2581 .2167 .0746 .9995 .9840 .0544
0 40 50 .3697 .8917 .3521 .2981 .1555 .9935 .9286 1144
0 80 0 .2487 5162 .1964 1673 .0019 1.0000 1.0000 .0005
0 80 6.25 .2516 .5450 .2019 1714 .0097 1.0000 1.0000 .0009
0 80 12.5 .2604 .6131 .2166 .1828 .0307 1.0000 1.0000 .0109
0 80 25 .2902 7561 .2587 .2168 .0829 1.0000 1.0000 .0853
0 80 50 .3703 .8958 .3530 .2994 1739 1.0000 .9990 .1941
Average type | error rate (size) 9198 8247 .0342

0.2 10 0 .1665 .2365 .0993 .0863 -.0616 1.0000 .9999 .1262
0.2 10 6.25 .1696 .2780 .1070 .0923 -.0499 .9998 .9993 .1459
0.2 10 12.5 .1808 .3780 .1252 .1045 -.0378 .9991 .9926 .1859
0.2 10 25 .2134 .6038 1747 .1433 .0037 .9884 .9290 .2150
0.2 10 50 .2970 .8353 2731 2191 .0451 .9207 7783 .2003
0.2 20 0 .1659 .2254 .0986 .0868 -.0345 1.0000 1.0000 .3056
0.2 20 6.25 .1704 .2759 .1065 .0919 -.0297 1.0000 1.0000 .3268
0.2 20 12.5 .1809 4034 .1266 .1060 -.0126 1.0000 1.0000 .3423
0.2 20 25 .2136 .6509 .1756 .1418 .0167 1.0000 .9983 .3378
0.2 20 50 .2973 .8632 2762 .2218 .0669 .9973 .9592 .2857
0.2 40 0 .1667 .2206 .0984 .0866 -.0043 1.0000 1.0000 .6265
0.2 40 6.25 1701 2797 .1066 .0920 .0019 1.0000 1.0000 6271
0.2 40 12.5 .1810 4212 .1269 .1055 .0147 1.0000 1.0000 6121
0.2 40 25 .2130 6754 1763 .1409 .0397 1.0000 1.0000 5390
0.2 40 50 .2974 8761 .2768 .2202 .0863 1.0000 .9998 4152
0.2 80 0 .1663 .2198 .0982 .0864 0178 1.0000 1.0000 .9244
0.2 80 6.25 .1706 .2839 .1070 .0921 .0239 1.0000 1.0000 .9136
0.2 80 12,5 .1814 4301 1275 .1055 .0370 1.0000 1.0000 .8927
0.2 80 25 2136 .6843 1772 1414 0676 1.0000 1.0000 .8078
0.2 80 50 .2970 .8819 .2768 .2201 .1207 1.0000 1.0000 6334
05 10 0 .0806 1071 0277 .0236 -.0243 1.0000 1.0000 .9528
0.5 10 6.25 .0824 1429 .0301 .0238 -.0282 1.0000 1.0000 9251
0.5 10 12.5 .0912 2573 0421 .0305 -.0339 1.0000 1.0000 .8259
05 10 25 .1188 .5344 .0797 .0545 -.0431 1.0000 .9995 6137
0.5 10 50 .2033 .8102 .1769 1247 -.0368 .9970 .9599 .3785
05 20 0 .0793 .0786 .0252 0222 -.0239 1.0000 1.0000 .9997
05 20 6.25 .0834 .1282 .0300 .0249 -.0224 1.0000 1.0000 .9978
0.5 20 12.5 .0894 .2786 .0401 .0289 -.0209 1.0000 1.0000 .9854
05 20 25 1193 .5905 .0819 .0552 -.0107 1.0000 1.0000 .8578
05 20 50 .2020 .8492 1771 .1197 -.0151 1.0000 .9992 5567
0.5 40 0 0799 .0567 0247 0226 -.0240 1.0000 1.0000 1.0000
05 40 6.25 .0833 11102 .0290 .0247 -.0229 1.0000 1.0000 1.0000
05 40 12.5 .0909 .2892 .0415 .0302 -.0190 1.0000 1.0000 .9998
0.5 40 25 1192 6227 .0824 .0542 .0007 1.0000 1.0000 .9838
05 40 50 .2021 .8624 .1789 .1196 .0234 1.0000 1.0000 .7905
05 80 0 .0804 .0395 .0241 .0227 -.0243 1.0000 1.0000 1.0000
0.5 80 6.25 .0826 1012 .0280 .0244 -.0231 1.0000 1.0000 1.0000
05 80 12.5 .0906 .3028 .0416 .0300 -.0193 1.0000 1.0000 1.0000
05 80 25 .1208 .6370 .0846 .0556 .0029 1.0000 1.0000 .9998
05 80 50 .2027 .8694 .1800 .1208 0514 1.0000 1.0000 .9568
Average .2016 .5083 1575 1291 .0175 9976 .9904 .6822

Notes: RE, WLS denotes the random-effects and unrestricted weighted least squares meta-analysis averages,
respectively, and PET-PEESE is the meta-regression publication bias corrected estimate.



Table 2: Bias, power and level of alternative meta-methods with no reporting selection

Design Average Bias Power/Type | Error
d m Oh Bias 12 RE WLS PET-PEESE RE WLS PET
0 10 0 -.0010 1044 | -.0002 | -.0000 -.0087 .0334 .0468 .0507
0 10 6.25 .0001 .1530 .0005 .0004 -.0104 .0560 .0610 .0607
0 10 12,5 -.0005 2840 | -.0005 | -.0008 -.0166 .0839 .0799 0713
0 10 25 .0003 5931 .0003 | -.0002 -.0253 .1038 .1063 .0969
0 10 50 .0009 .8541 .0012 .0021 -.0413 .1148 1213 .0983
0 20 0 .0004 .0824 0000 | -.0000 -.0082 .0354 .0459 .0522
0 20 6.25 -.0002 .1388 .0000 .0000 -.0082 .0554 .0587 .0534
0 20 12,5 -.0002 .3120 .0004 .0004 -.0097 0775 .0816 .0745
0 20 25 -.0009 6514 | -.0006 | -.0004 -.0173 .0787 .1105 .0965
0 20 50 -.0001 .8803 .0000 .0013 -.0255 .0768 1152 .0967
0 40 0 -.0002 .0608 .0000 .0000 -.0047 0428 .0541 .0519
0 40 6.25 .0005 1283 | -.0001 | -.0001 -.0071 .0501 0572 .0609
0 40 12.5 -.0004 3334 | -.0007 | -.0008 -.0091 .0621 .0785 .0807
0 40 25 -.0004 6797 -.0006 | -.0008 -.0137 .0638 .1017 .0906
0 40 50 .0004 .8917 .0006 .0009 -.0188 .0670 .1166 .0924
0 80 0 .0003 .0428 .0005 .0005 -.0031 0422 .0527 .0482
0 80 6.25 -.0000 1188 | -.0001 | -.0001 -.0046 .0533 .0602 .0587
0 80 12.5 -.0006 3519 | -.0004 | -.0002 -.0051 .0569 .0823 .0740
0 80 25 .0003 .6909 .0005 .0006 -.0079 0574 .1056 .0922
0 80 50 .0003 .8957 .0003 .0001 -.0155 .0590 .1149 .0935

Average type | error rate (size) | .0635 | .0825 .0747

0.2 10 0 .0029 .1042 .0001 .0000 -.0254 9771 .9789 4301
0.2 10 6.25 .0019 1489 | -.0005 | -.0006 -.0275 9617 9572 .3907
0.2 10 12.5 .0025 .2887 -.0001 | -.0006 -.0335 .8909 8711 .3359
0.2 10 25 -.0001 5954 | -.0026 | -.0048 -.0517 .6808 6316 2321
0.2 10 50 .0030 .8537 -.0006 | -.0095 -.0858 .3871 .3529 .1555
0.2 20 0 .0019 0811 -.0005 | -.0005 -.0139 .9997 .9999 .7048
0.2 20 6.25 .0027 .1402 .0000 | -.0002 -.0165 .9990 .9990 .6403
0.2 20 12.5 .0015 3105 | -.0010 | -.0015 -.0249 .9922 .9906 5242
0.2 20 25 .0036 .6516 .0006 | -.0023 -.0427 .8800 .8460 .3240
0.2 20 50 .0027 8790 | -.0002 | -.0103 -0774 5337 4905 1799
0.2 40 0 .0021 0615 | -.0002 | -.0002 -.0045 1.0000 | 1.0000 .9325
0.2 40 6.25 .0024 .1290 .0001 -.0001 -.0061 1.0000 | 1.0000 .8935
0.2 40 12.5 .0025 .3354 .0000 | -.0005 -.0117 .9999 1.0000 .7600
0.2 40 25 .0027 6779 .0004 | -.0016 -.0280 .9893 .9825 .5007
0.2 40 50 .0022 8903 | -.0006 | -.0106 -.0673 7613 .6994 2317
0.2 80 0 .0022 0440 | -.0003 | -.0004 -.0026 1.0000 | 1.0000 .9978
0.2 80 6.25 .0023 1200 | -.0003 | -.0004 -.0028 1.0000 | 1.0000 .9931
0.2 80 12,5 .0018 3499 | -.0006 | -.0012 -.0051 1.0000 | 1.0000 .9521
0.2 80 25 .0023 6914 | -.0004 | -.0031 -.0199 .9999 .9997 .7069
0.2 80 50 .0009 8953 | -.0022 | -.0130 -.0620 .9485 .9020 .3281
05 10 0 .0066 .1076 0000 | -.0003 -.0057 1.0000 | 1.0000 .9760
05 10 6.25 .0047 .1495 .0002 -.0003 -.0051 1.0000 | 1.0000 .9549
05 10 12.5 .0058 2843 | -.0010 | -.0026 -.0178 1.0000 | 1.0000 8721
05 10 25 .0067 5843 | -.0003 | -.0054 -.0515 .9986 .9938 6137
05 10 50 .0041 8511 -.0038 | -.0250 -.1354 .9101 8123 .3072
05 20 0 .0059 0819 | -.0002 | -.0003 -.0048 1.0000 | 1.0000 1.0000
05 20 6.25 .0056 .1337 -.0002 | -.0007 -.0052 1.0000 | 1.0000 .9996
05 20 12,5 .0049 3074 | -.0015 | -.0030 -.0092 1.0000 | 1.0000 .9923
05 20 25 .0050 6454 | -.0014 | -.0069 -.0293 1.0000 | 1.0000 .8457
05 20 50 .0048 8772 -.0028 | -.0251 -.1168 .9925 .9680 4332
05 40 0 .0044 0630 | -.0011 | -.0013 -.0057 1.0000 | 1.0000 1.0000
05 40 6.25 .0047 1258 | -.0010 | -.0013 -.0060 1.0000 | 1.0000 1.0000
05 40 12.5 .0051 3275 | -.0008 | -.0023 -.0081 1.0000 | 1.0000 1.0000
05 40 25 .0060 6728 | -.0009 | -.0078 -.0202 1.0000 | 1.0000 .9786
05 40 50 .0062 8886 | -.0014 | -.0267 -.0960 1.0000 .9995 6185
05 80 0 .0053 0433 | -.0006 | -.0007 -.0056 1.0000 | 1.0000 1.0000
05 80 6.25 .0049 1161 -.0009 | -.0012 -.0063 1.0000 | 1.0000 1.0000
05 80 12,5 .0053 3438 | -.0010 | -.0026 -.0089 1.0000 | 1.0000 1.0000
05 80 25 .0054 6858 | -.0013 | -.0079 -.0188 1.0000 | 1.0000 .9999
05 80 50 .0057 .8932 -.0019 | -.0273 -.0685 1.0000 | 1.0000 .8500

Average -.0003 .5083 -.0005 | -.0035 -.0249 9476 .9369 7164

Notes: RE, WLS denotes the random-effects and unrestricted weighted least squares meta-analysis averages,
respectively, and PET-PEESE is the meta-regression publication bias corrected estimate.



Table 3: Bias, power and level: 50% reporting selection for larger sample sizes

Design Average Bias Power/Type | Error
d m Oh Bias 12 RE WLS PET-PEESE RE WLS PET
0 10 0 11659 5296 1273 .1065 .0011 7948 4688 .0001
0 10 6.25 1718 .5694 .1364 1136 .0109 7750 4899 .0007
0 10 12,5 .1836 .6601 .1554 .1287 .0310 7286 4813 0123
0 10 25 .2188 8116 .2021 .1692 .0743 .6499 4511 .0532
0 10 50 .3066 .9283 .2992 .2587 .1481 5623 4016 .0841
0 20 0 11663 5309 1276 .1063 .0001 .9957 .9458 .0001
0 20 6.25 1710 5838 .1364 1132 .0114 .9885 .8990 .0017
0 20 12,5 .1837 .6864 .1561 1291 .0343 9711 8273 .0201
0 20 25 2191 .8405 .2034 .1693 .0789 .9085 7181 .0784
0 20 50 .3071 .9428 .2999 .2564 1524 .8065 6187 .1168
0 40 0 .1656 5336 1276 .1063 .0014 1.0000 | 1.0000 .0000
0 40 6.25 A711 .5903 .1367 1132 0121 1.0000 .9992 .0031
0 40 12.5 .1839 .7002 .1568 1292 .0372 1.0000 .9925 .0313
0 40 25 .2186 .8527 .2033 .1688 .0851 .9979 .9480 1202
0 40 50 .3062 .9485 .2995 .2569 .1653 .9807 .8813 1713
0 80 0 .1665 5314 .1281 .1066 .0006 1.0000 | 1.0000 .0007
0 80 6.25 1713 .5929 .1370 1134 .0134 1.0000 | 1.0000 .0032
0 80 12.5 .1837 7047 .1568 .1288 .0406 1.0000 | 1.0000 .0575
0 80 25 2192 8578 .2042 .1699 .0971 1.0000 .9994 .2025
0 80 50 .3065 .9512 .2999 .2566 .1788 .9998 .9934 .2704

Average type | error rate (size) .9080 .8058 | .0614

0.2 10 0 .0884 .1815 .0404 .0338 -.0288 1.0000 | 1.0000 .5095
0.2 10 6.25 .0942 .2787 .0510 .0410 -.0264 1.0000 | 1.0000 4647
0.2 10 12.5 .1072 4741 .0737 0574 -.0155 1.0000 .9959 4189
0.2 10 25 .1458 .7504 .1259 .0975 .0084 .9888 .9278 .3338
0.2 10 50 .2366 .9190 2271 .1854 .0690 .9036 7576 .2549
0.2 20 0 .0882 1615 .0393 .0336 -.0100 1.0000 | 1.0000 .8610
0.2 20 6.25 .0942 .2841 .0513 .0416 -.0051 1.0000 | 1.0000 .7956
0.2 20 12.5 .1073 .5200 .0748 0573 .0028 1.0000 | 1.0000 6677
0.2 20 25 .1466 7971 .1285 .0985 .0268 1.0000 .9980 4997
0.2 20 50 .2354 .9355 .2269 .1825 .0792 .9930 .9426 .3567
0.2 40 0 .0881 1514 .0389 .0337 -.0043 1.0000 | 1.0000 19921
0.2 40 6.25 .0937 .2934 .0507 .0410 .0036 1.0000 | 1.0000 9775
0.2 40 12.5 .1072 .5468 .0754 .0573 .0180 1.0000 | 1.0000 .9092
0.2 40 25 1464 8153 1291 .0985 0475 1.0000 | 1.0000 7347
0.2 40 50 .2376 .9428 .2297 .1841 .1019 1.0000 .9985 5213
0.2 80 0 .0883 1446 .0390 .0341 -.0036 1.0000 | 1.0000 1.0000
0.2 80 6.25 .0941 .3045 0511 0411 .0042 1.0000 | 1.0000 .9998
0.2 80 12,5 .1079 .5630 .0764 .0575 .0224 1.0000 | 1.0000 .9952
0.2 80 25 .1462 .8241 .1295 .0990 .0633 1.0000 | 1.0000 .9438
0.2 80 50 2371 .9457 .2293 .1828 1264 1.0000 | 1.0000 7590
05 10 0 .0294 .0935 .0070 .0055 -.0108 1.0000 | 1.0000 1.0000
05 10 6.25 .0307 .1983 .0087 .0054 -.0118 1.0000 | 1.0000 .9990
05 10 12.5 .0375 4344 .0169 .0079 -.0141 1.0000 | 1.0000 .9676
05 10 25 .0656 7427 .0487 .0273 -.0220 1.0000 .9994 7410
05 10 50 .1499 .9138 .1385 .0929 -.0208 .9959 .9548 4470
05 20 0 .0283 .0698 .0060 .0050 -.0110 1.0000 | 1.0000 1.0000
05 20 6.25 .0308 .2041 .0085 .0055 -.0120 1.0000 | 1.0000 1.0000
05 20 12,5 .0367 4967 .0166 .0074 -.0127 1.0000 | 1.0000 .9999
05 20 25 .0652 .7933 .0499 .0263 -.0052 1.0000 | 1.0000 .9430
05 20 50 .1500 .9323 .1401 .0905 .0043 1.0000 .9994 .6506
05 40 0 .0290 .0500 .0062 .0056 -.0107 1.0000 | 1.0000 1.0000
05 40 6.25 .0309 .2039 .0082 .0055 -.0122 1.0000 | 1.0000 1.0000
05 40 12.5 .0372 5298 0172 .0077 -.0127 1.0000 | 1.0000 1.0000
05 40 25 .0649 8117 .0503 .0257 -.0012 1.0000 | 1.0000 .9983
05 40 50 1484 .9394 11395 .0896 .0343 1.0000 | 1.0000 .8637
05 80 0 .0288 .0325 .0056 .0052 -.0112 1.0000 | 1.0000 1.0000
05 80 6.25 .0305 .2095 .0079 .0052 -.0124 1.0000 | 1.0000 1.0000
05 80 12,5 .0370 .5490 .0170 .0074 -.0131 1.0000 | 1.0000 1.0000
05 80 25 .0650 .8200 .0508 .0261 -.0007 1.0000 | 1.0000 1.0000
05 80 50 .1495 .9425 .1407 .0890 .0468 1.0000 | 1.0000 .9842

Average .1354 .5858 1111 .0883 .0257 .9970 .9893 .8147

Notes: RE, WLS denotes the random-effects and unrestricted weighted least squares meta-analysis averages,
respectively, and PET-PEESE is the meta-regression publication bias corrected estimate.



Table 4: Bias, power and level: 50% reporting selection and smaller sample sizes

Design Average Bias Power/Type | Error

d m Oh Bias 12 RE WLS PET-PEESE RE WLS PET
0 10 0 .3760 4698 3371 .3180 -.0701 .8008 5812 .0002
0 10 6.25 3778 4827 .3396 .3200 -.0670 .7899 5603 0.0000
0 10 12,5 .3837 5017 .3469 .3260 -.0610 7767 5564 0.0000
0 10 25 4047 5794 3726 .3475 -.0368 7291 5157 .0004
0 10 50 4725 7282 4473 4102 -.0049 6517 4438 .0024
0 20 0 3754 4760 .3365 3172 -.0739 .9939 .9756 0.0000
0 20 6.25 3778 4837 .3397 .3200 -.0678 .9936 9712 .0003
0 20 12,5 .3828 5108 .3462 .3249 -.0642 .9895 .9592 .0002
0 20 25 4052 .5956 3728 .3470 -.0427 .9737 .9205 .0005
0 20 50 A752 7490 4508 4119 -.0126 .9254 .8235 .0025
0 40 0 .3750 4766 .3367 3174 -.0699 1.0000 | 1.0000 .0003
0 40 6.25 .3780 14891 .3398 .3197 -.0717 1.0000 | 1.0000 .0002
0 40 12.5 .3835 5174 .3469 .3255 -.0636 1.0000 | 1.0000 .0004
0 40 25 4058 .6031 .3738 3478 -.0407 1.0000 .9999 .0011
0 40 50 4722 .7598 4483 4089 -.0134 .9989 .9930 .0039
0 80 0 3757 .4806 3372 3178 -.0718 1.0000 | 1.0000 .0014
0 80 6.25 3776 4911 .3398 .3198 -.0688 1.0000 | 1.0000 .0019
0 80 12.5 .3837 5202 3473 .3259 -.0628 1.0000 | 1.0000 .0010
0 80 25 4052 .6080 3734 3471 -.0427 1.0000 | 1.0000 .0015
0 80 50 4737 .7645 4500 4102 -.0134 1.0000 | 1.0000 .0024
Average type | error rate (size) .9312 .8650 .0010

0.2 10 0 .2914 .2746 .2445 .2332 -.1509 .9980 .9896 .0054
0.2 10 6.25 .2939 .2915 2474 .2354 -1514 .9977 .9879 .0053
0.2 10 12.5 .3016 3271 .2566 2425 -.1487 .9967 .9852 .0058
0.2 10 25 .3257 4472 .2863 .2658 -1319 9871 .9522 0117
0.2 10 50 .3967 .6693 .3665 3271 -.1368 .9387 .8399 .0185
0.2 20 0 2917 .2696 2441 .2333 -.1547 1.0000 | 1.0000 .0059
0.2 20 6.25 .2952 .2874 2479 .2364 -1531 1.0000 | 1.0000 .0076
0.2 20 12.5 .3022 .3351 2572 2436 -.1464 1.0000 | 1.0000 .0100
0.2 20 25 .3254 4716 .2859 .2646 -.1405 1.0000 .9998 0176
0.2 20 50 .3984 .7060 .3684 .3275 -.1441 .9988 .9928 .0208
0.2 40 0 .2923 .2683 2443 .2336 -.1552 1.0000 | 1.0000 .0104
0.2 40 6.25 .2941 .2893 .2468 .2352 -.1560 1.0000 | 1.0000 0114
0.2 40 12.5 .3014 .3396 .2561 2424 -.1480 1.0000 | 1.0000 .0145
0.2 40 25 .3253 4874 .2860 .2644 -.1400 1.0000 | 1.0000 .0205
0.2 40 50 .3958 .7205 .3666 .3248 -.1485 1.0000 | 1.0000 0211
0.2 80 0 2922 2741 .2440 .2333 -.1539 1.0000 | 1.0000 0141
0.2 80 6.25 .2947 .2924 2471 .2355 -.1535 1.0000 | 1.0000 .0197
0.2 80 12,5 .3014 .3483 .2562 2422 -.1473 1.0000 | 1.0000 .0204
0.2 80 25 .3252 4978 .2866 .2649 -.1310 1.0000 | 1.0000 .0273
0.2 80 50 .3968 7265 .3678 .3254 -.1481 1.0000 | 1.0000 .0192
05 10 0 1814 .1061 1294 1247 -.2355 1.0000 | 1.0000 .0927
05 10 6.25 .1838 1215 1319 .1265 -.2378 1.0000 | 1.0000 .0863
05 10 12.5 .1919 .1562 1412 11340 -.2374 1.0000 | 1.0000 .0916
05 10 25 .2183 .2948 1722 1574 -.2376 1.0000 .9997 .0766
05 10 50 .2920 .5953 .2532 2116 -.3074 .9960 .9790 0473
05 20 0 11820 0794 1277 1242 -.2202 1.0000 | 1.0000 1729
05 20 6.25 .1856 .0930 1317 1278 -.2175 1.0000 | 1.0000 1739
05 20 12,5 1925 1374 .1399 1341 -.2206 1.0000 | 1.0000 1716
05 20 25 2173 3129 .1708 11563 -.2281 1.0000 | 1.0000 1277
05 20 50 .2950 .6448 .2573 .2141 -.3123 1.0000 | 1.0000 .0636
05 40 0 1814 .0558 1257 1235 -.1763 1.0000 | 1.0000 .3429
05 40 6.25 .1849 .0694 .1301 1272 -.1738 1.0000 | 1.0000 .3442
05 40 12.5 .1926 1232 .1386 11335 -.1839 1.0000 | 1.0000 .3018
05 40 25 .2188 .3263 1710 .1561 -.2081 1.0000 | 1.0000 2142
05 40 50 .2944 6671 .2579 .2137 -.3044 1.0000 | 1.0000 .0800
05 80 0 11821 .0374 .1255 11240 -.1107 1.0000 | 1.0000 6159
05 80 6.25 .1845 .0526 .1283 1262 -1121 1.0000 | 1.0000 6013
05 80 12,5 1918 .1068 1374 11330 -.1169 1.0000 | 1.0000 5560
05 80 25 2172 .3349 .1697 .1546 -1524 1.0000 | 1.0000 .3977
05 80 50 .2942 .6766 2578 2128 -.2889 1.0000 | 1.0000 1201
Average 3131 .4100 2714 .2518 -.1374 .9978 .9932 1241

Notes: RE, WLS denotes the random-effects and unrestricted weighted least squares meta-analysis averages,
respectively, and PET-PEESE is the meta-regression publication bias corrected estimate.



Cohen’s d and its standard error are calculated for each simulated study. This is repeated
m={10, 20, 40, 80} times to represent one meta-analysis, and everything is again repeated
10,000 times to calculate various averages and statistics across 10,000 meta-analyses.

We simulate areas of research that do not have any selective reporting (Table 2) and
others in which half of the reported results have undergone a process of selection to be
statistically significant and positive (Tables 1, 3 and 4). For the remaining 50%, each randomly
generated result is reported, statistically significant or not. This choice of 50% selective
reporting is chosen to reflect what is generally seen in the psychological research record. The
simulations results reported in Table 1 for the 50% selective reporting case correspond quite
closely to what the Open Science Collaboration (2015) and Richard and Bond’s (2003) broad
surveys find. Table 1 reveals that when the true mean effect is pq = .2 and there is 50% selective
reporting, the average reported effect will be .4046, quite close to the average effect found in
social psychology by Richard and Bond (2003).

Results
Tables 1-4 report the average biases of random-effects (RE), the unrestricted weighted least
squares (WLS) and the conditional meta-regression estimator PET-PEESE. The last three
columns of these tables report the observed frequency in which RE, WLS, and PET reject the null
hypothesis of no effect (Ho: pus=0). When the mean true effect is zero (i.e., pua =0), these
proportions represent the observed frequency of a type I error (aka ‘size’). About one-third of
the way down Tables 1-4, the average ‘sizes’ are displayed in the last three columns. When the
true effect is not zero (i.e., ua =.2 or ug =.5), these proportions represent the power of these
alternative estimators to identify a nonzero overall effect. At the bottom of Tables 1-4, the
average powers are displayed along with the average biases and average 1°.

The simulations revealed in Table 1 assume that the distribution of sample sizes is n =
{15, 35, 50, 100, or 200} per group following Fraley and Vazire (2014) and that 50% of the
reported results are selected to be statistically significant and positive. With 50% selective
reporting, biases can be substantial. Over all three true mean effect sizes, the average selective
reporting bias is .2016. However, this bias is larger (.2941) when there is no true effect, pq=0.
Although random-effects (RE) reduces this bias somewhat (.1575, overall), RE can give the

appearance of a small effect (.2446) when there is none (us=0). Worse still, RE makes a type |



error nearly 92% of the time (.9198). Thus, conventional random-effects meta-analysis does not
provide a basis for valid statistical inference when there is selective reporting bias. The
unrestricted WLS weighted average dominates RE in all cases (smaller biases and lower type |
error rates)—see Table 1. However, it too tends to have large type | error inflation (82.5%, on
average). The known relationship between WLS and fixed-effect (FE) implies that FE will
always have worse type | error rates than WLS when there is any heterogeneity and is thus not
reported.

Only the precision-effect test (PET) has acceptable type | error rates (3.5% on average),
which is less than the nominal 5% level used by all of these simulations. Likewise, the related
PET-PEESE conditional meta-regression estimator successfully reduces average bias to practical
insignificance (.0175). Also, the average of absolute bias of PET-PEESE remains practically
insignificant—.0382. But PET and PET-PEESE too has their limitations—see the ‘Discussion
and Comments’ below.

Both RE and WLS have quite high power to reject Ho: ng=0 when there is either a small
(ug=.2) or a medium-size effect (us=.5). However, this is neither surprising nor meaningful,
because both have very high rates of falsely rejecting Ho: ne=0, when there is no genuine effect
(i.e., na=0). Only PET has acceptable size, so only its statistical power is relevant. For a small
effect, ua=.2, PET’s power reaches 50% if there are 40 or more estimates. However, when there
is a medium-size effect, ng=.5, PET’s power is almost always greater than 80%. The only
exceptions to this positive evaluation of PET and PET-PEESE for these typical social/personality
psychology conditions (Table 1) occur when there is very high heterogeneity. See ‘Discussion
and Comments’ below for the meaning of these limitations and how they might be mitigated.

Simulations reported in Table 2 calculate the same statistics for the exact same design
parameters as those that generate Table 1’s results, except that none of the simulated study
results have been selected for statistical significance. When there is no selective reporting bias,
all three meta-analysis approaches have practically insignificant bias, small type I errors and
large powers. All three have average rates of type | errors 1 to 3% higher than the nominal 5%
level, with RE closest to 5%. All three generally have high power to detect a genuine nonzero
effect, but their powers decrease at the highest levels of heterogeneity. PET’s power is the
lowest of the three, when there is no selective reporting, and, as before, PET’s power can be

rather low for small meta-regression samples and small effects—see Table 2. PET-PEESE has a



small negative bias at the highest level of heterogeneity. Although PET-PEESE’s underestimate
is worthy of note, it is not large enough to be practically relevant. In all cases, RE’s has superior
properties when there is no publication or selective reporting bias. Unfortunately, researchers
can never rule out the potential presence of selective reporting bias in practice, because all tests
for publication bias have low power (Egger, 1997; Stanley, 2008).

To explore other weaknesses of these meta-analysis methods, we also simulate cases
where the studies in the primary research literature use different distributions of sample sizes.
The simulation results reported in Tables 3 and 4 are identical in every way to those reported in
Table 1, except they rely on a different distribution of sample sizes in the primary literature. The
simulations displayed in Table 3 assume that the sample size, n, in each group is either: 32, 64,
125, 250 or 500. Larger sample sizes with greater dispersion between studies are quite common
in other areas of research, especially economics and medical research (e.g., Stead et al., 2008;
Stanley and Doucouliagos, 2014). Overall, the results are quite similar to those reported in Table
1. With these larger samples sizes, average selective reporting bias decreases along with the
biases of both RE and WLS. Nonetheless, notable biases will still persist, on average, when there
is no overall true effect (g =0). Average selective reporting bias =.2093, RE’s average bias is
.1847, and WLS has an average bias of .1550. Here too, only PET produces type | error rates
even close to their nominal 5% level. With access to these larger studies, PET’s power improves.
Table 3 shows that PET has high power to detect even small effects when there are sufficient
estimates. Both PET and PET-PEESE dominate RE and WLS and have generally desirable
properties. However, as before, both PET and PET-PEESE have difficulties at the highest levels
of heterogeneity—see Discussion and Comments below.

The simulations displayed in Table 4 assume yet another sample size distribution, n={10,
18, 25, 33, or 40} per group. We believe that these small sample sizes represent the worst-case
scenario for all meta-analysis methods. Nonetheless, these sample sizes are found in at least one
psychological meta-analysis on the transfer of working memory to fluid intelligence (Au et al,
2015; Boggs and Lasecki, 2015). As before, when there is selective reporting bias, there are large
biases for conventional meta-analysis, and their type | error rates are unacceptably large, 93%
and 87% for RE and WLS, respectively. Although PET’s type | errors are very low, .001, its
power to detect nonzero effects is now unacceptably low, .1241 on average. Also, PET-PEESE

consistently underestimates true average effect when it has access to only small sample studies.



When all research studies use small samples and if some results are selected to be statistically

significant, all meta-analysis methods have unacceptable statistical properties.

Discussion and Comments
The central purpose of this study is to identify limitations of recently developed meta-regression
methods to accommodate and reduce publication bias—PET and PET-PEESE. These
simulations succeed in uncovering several important limitations and weaknesses. First, the
precision-effect test (PET) sometimes has low power in identifying a genuine nonzero effect
when there are only 10 or 20 estimates available in an area of research. This is especially true if
the true effect is small (i.e., ug =.2)—recall Table 1. This limitation is not especially surprising,
because PET is based on a regression that tries to find evidence that power is increasing as
research studies have access to larger samples (or smaller SEs). Nonetheless, researchers should
be very cautious when applying PET to 10, 20 or fewer results. Under realistic assumptions,
PET’s power to detect a small effect may be less than 50% in small meta-samples.

Second, when there are very high levels of heterogeneity, the properties of both PET and

PET-PEESE worsen. At the highest level of heterogeneity, o, =50, PET’s size becomes

inflated, larger than the nominal 5% level. This type | error inflation actually worsens as the
meta-analysis sample increases. Although a serious problem, this type I error inflation is minor
compared with very high type | error inflation rates that are typical of conventional meta-
analysis: random-effects (RE) and weighted least squares (WLS)—recall Table 1. When there
are 20 or more estimates in an area of research, it is nearly certain that RE will find that an effect
is present when, in fact, there is no overall effect. Conventional meta-analysis is entirely invalid
as a test for the presence of social-psychological phenomena if there is selective reporting bias

(or publication bias or p-hacking). Also, with the highest level of heterogeneity, o, =50, PET-

PEESE tends to exaggerate the size of the effect, by as much as .17, which explains PET’s type |
error inflation. Nonetheless, PET-PEESE is much better than RE in these same cases. RE’s bias
is at least twice as large as PET-PEESE ’s and often much larger.

Although extreme heterogeneity poses an important challenge for all meta-analysis
methods, this is to be expected when one understands what such high heterogeneity implies

about the underlying social/personality psychological phenomenon. With o, =50, the typical



variation of true effects from their mean true effect is +0.5d. This implies that nearly 16% of the
time the true effect is actually negative when the mean true effect, pq, is positive and medium-
size (ud =0.5). Heterogeneity means that there is no single ‘true’ effect, but rather ‘true’ effects

vary from study to study by the equivalent of d=+.5 for o, =50. Thus, at this highest level of

heterogeneity, true positive and negative small effects will in fact exist 69% of the time when the
true mean effect is zero. From nothing, medium-sized effects (positive and negative) will occur
32% of the time. The point is that such high levels of heterogeneity obscure the very meaning of
what the ‘true’ social/personality psychological effect is.

When the underlying true phenomenon is so highly variable and random, it would be
unrealistic to expect any statistical method to be able to see reliably through this fog of truth
without access to many highly reliable study results. Add selective reporting bias and sampling
error to this mix of truth, and it would be remarkable if any statistical method could provide a
reliable basis for inference.

So what can be done? Is reliable inference under realistic conditions impossible? We
recommend that no meta-analysis method be used if I1? is greater than 80%. Because tests of
heterogeneity are widely known to have low power and to be statistically unreliable, formal
hypothesis testing of 12 or its related sample variance, MSE from equation (4), is unlikely to be
useful in practice. Thus, we recommend this 80% cutoff only as an application ‘rule of thumb.’
When applied to these simulation results, PET-PEESE would not be calculated for many of the

instances where heterogeneity is at its highest level, o, =50. As a result, most of the worrisome

cases for PET-PEESE and PET would be eliminated, and the average power/type | error for PET
improves—.7257 and .0135 for average power and size, respectively, for the simulations
reported in Table 1. However, as discussed above, when observed heterogeneity is higher than
80%, the very meaning of social/personality psychological phenomenon is questionable. With a

typical true effect of pug=.2 and a very high level of heterogeneity ( o, =50), the true effect will

have the opposite sign as g over one-third of the time (.3446).

The third limitation of PET-PEESE and PET revealed by this study is that the viability of
these meta-analysis methods depends on the distribution of sample sizes (or statistical powers)
found among the primary studies in the social/personality psychological research literature. For
typical sample sizes found in social/personality psychology (Fraley and Vazire, 2014), these



methods work rather well with the exceptions of small meta-analysis sample sizes and very high
heterogeneity, as discussed above. However, in those rare cases where an entire research
literature contains very small studies, PET becomes virtually impotent, unable to identify a
genuine effect should it exist. In this worst-case scenario, the average power is only .1241, but
the type | error rate is practically zero, .001—see Table 4. When reviewers observe that all the
sample sizes in a research literature are small, PET’s statistical properties would improve notable
if a one-tail test with alpha of 10% were used rather than the conventional two-tail test at 5%.
Nonetheless, great caution should be used in interpreting any meta-analysis, regardless of the
methods used when all studies are underpowered, because the research record contains little
genuine information.

It is important to put PET-PEESE s limitations in context. First, in all these cases where
the use of PET-PEESE is compromised, conventional meta-analysis (RE and FE) is much worse.
In all three cases: small meta-analysis samples, high heterogeneity and research literatures
comprised of only small-sample studies, RE and WLS are much worse than PET-PEESE. Thus,
the limitations identified by our simulations are not challenges for PET-PEESE alone but apply
to all meta-analysis methods.

Furthermore, meta-analysis’s limitations may alternatively be regarded as inadequacies of
the research record. If all studies in an area of social/personality psychology research are greatly
underpowered, this can only be seen as weakness of that area of research. For over 30 years,
psychologists have been acutely aware of the critical importance of statistical power (Cohen,
1988; Fraley and Vazire, 2014)). Without adequate power, “the published literature is likely to
contain a mixture of apparent results buzzing with confusion. . . . Not only do underpowered
studies lead to a confusing literature but they also create a literature that contains biased
estimates of effect sizes” (Maxwell, 2004, p.161). Meta-analysis can effectively increase
statistical power by combining several underpowered primary results only if they are known to
be unbiased. With selective reporting bias, some adequately-powered studies are required to
distinguish the genuine signal from bias and noise. Small meta-analysis samples are another
limitation that stems from the primary research record. If an area of research is relatively new
and/or under-researched, then there will insufficient research knowledge to be confident about
the phenomenon in question. Lastly is the issue of very high levels of heterogeneity. The source

of such a confused effect is not meta-analysis, but rather some combination of the



social/personality psychological phenomenon and the research methods used to study it. In some
cases, social/personality psychological effects may vary greatly by socio-economic status, age,
gender, culture, or the passage of time. Or, the instruments used to measure social/personality
psychological effects may have low reliability and biases, causing the appearance of
heterogeneity in reported outcomes. Before meta-analysis can reliably reduce ubiquitous

selective reporting biases, the research record must contain some adequately powered studies.

Conclusion

We investigate the statistical properties and limitations of the PET-PEESE approach to
identifying a genuine effect in the presence of selective reporting bias. Our simulations reveal
that these meta-analysis methods are valid for the typical social/personality psychological area of
research, but they do have important limitations. First, very large heterogeneity (12>80%) can
reduce power and raise the probability of a type I error. Second, their reliability and statistical
power depends on the distribution of sample sizes found in the research record in question. If all
studies are small, PET-PEESE is almost powerless to identify a genuine empirical effect. Third,
recent or sparse areas of research which have only a few studies may also pose a challenge to
PET-PEESE because this approach is based upon regression. Thus, reviewers and meta-analysts
should use caution when applying these meta-regression methods. Nonetheless, even under
these unfavorable conditions, PET-PEESE is likely to be more reliable than conventional meta-

analysis, which is almost always invalid when there is selective reporting (or publication) bias.
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